Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 118: 102851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308916

RESUMO

The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Enxaqueca com Aura , Humanos , Camundongos , Animais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Astrócitos/metabolismo , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo
2.
Prog Neurobiol ; 216: 102310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724808

RESUMO

The etiology of epilepsy remains undefined in two-thirds of patients. Here, we identified a de novo variant of ATP1A2 (c.2426 T > G, p.Leu809Arg), which encodes the α2 subunit of Na+/K+-ATPase, from a family with idiopathic epilepsy. This variant caused epilepsy with hemiplegic migraine in the study patients. We generated the point variant mouse model Atp1a2L809R, which recapitulated the epilepsy observed in the study patients. In Atp1a2L809R/WT mice, convulsions were observed and cognitive and memory function was impaired. This variant affected the potassium binding function of the protein, disabling its ion transport ability, thereby increasing the frequency of nerve impulses. Valproate (VPA) and Carbamazepine (CBZ) have limited therapeutic efficacy in ameliorating the epileptic syndromes of Atp1a2L809R/WT mice. Our work revealed that ATP1A2L809R variants cause a predisposition to epilepsy. Moreover, we provide a point variant mouse model for epilepsy research and drug screening.


Assuntos
Epilepsia , Enxaqueca com Aura , Animais , Modelos Animais de Doenças , Epilepsia/genética , Camundongos , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Mutação , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
3.
J Am Heart Assoc ; 11(7): e021814, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289188

RESUMO

Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.


Assuntos
Coração , Transtornos de Enxaqueca , Enxaqueca com Aura , ATPase Trocadora de Sódio-Potássio , Animais , Coração/fisiopatologia , Heterozigoto , Camundongos , Enxaqueca com Aura/metabolismo , Mutação , Miocárdio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
4.
Nat Commun ; 11(1): 6164, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268780

RESUMO

Familial hemiplegic migraine is an episodic neurological disorder characterized by transient sensory and motor symptoms and signs. Mutations of the ion pump α2-Na/K ATPase cause familial hemiplegic migraine, but the mechanisms by which α2-Na/K ATPase mutations lead to the migraine phenotype remain incompletely understood. Here, we show that mice in which α2-Na/K ATPase is conditionally deleted in astrocytes display episodic paralysis. Functional neuroimaging reveals that conditional α2-Na/K ATPase knockout triggers spontaneous cortical spreading depression events that are associated with EEG low voltage activity events, which correlate with transient motor impairment in these mice. Transcriptomic and metabolomic analyses show that α2-Na/K ATPase loss alters metabolic gene expression with consequent serine and glycine elevation in the brain. A serine- and glycine-free diet rescues the transient motor impairment in conditional α2-Na/K ATPase knockout mice. Together, our findings define a metabolic mechanism regulated by astrocytic α2-Na/K ATPase that triggers episodic motor paralysis in mice.


Assuntos
Astrócitos/metabolismo , Ataxia/genética , Metaboloma/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Transcriptoma , Animais , Astrócitos/patologia , Ataxia/metabolismo , Ataxia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Neuroimagem Funcional , Glicina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/patologia , Teste de Desempenho do Rota-Rod , Serina/metabolismo , ATPase Trocadora de Sódio-Potássio/deficiência
5.
Cephalalgia ; 40(11): 1177-1190, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32484063

RESUMO

BACKGROUND: Cortical spreading depression is thought to be the underlying mechanism of migraine aura. In 2006, three relatives having the point mutation E700K in ATP1A2 exon 15 were diagnosed with familial hemiplegic migraine 2 characterized by complicated forms of aura. Here, we generated a transgenic mouse model having the human E700K mutation in the Atp1a2 orthologous gene. OBJECTIVE: To investigate the characteristics of cortical spreading depression in a mouse model with E700K mutation in the Atp1a2. METHODS: Cortical spreading depression was induced by applying stepwise increases of KCl concentration or electrical stimulation intensity to C57BL/6J-Tg(Atp1a2*E700K)9151Kwk mice (Tg, both sexes) and corresponding wild-type animals. Under urethane anesthesia, the responsiveness and threshold to cortical spreading depression were examined and the distribution of c-Fos expression, a neuronal activity marker, was immunohistochemically determined. RESULTS: Overall, Tg mice showed significantly faster propagation velocity (p < 0.01) and longer full-width-at-half-maximum (p < 0.01) than wild-type animals, representing a slower recovery from direct current potential deflection. The cortical spreading depression threshold tended to be lower in Tg, especially in females. c-Fos-positive cells were significantly enhanced in the ipsilateral somatosensory cortex, piriform cortex, amygdala and striatum (each p < 0.05 vs. contralateral side). Numbers of c-Fos positive cells were significantly higher in the ipsilateral amygdala of Tg, as compared with wild-type animals (p < 0.01). CONCLUSION: The effect of cortical spreading depression may be greater in E700K transgenic mice than that in wild-type animals, while the threshold for cortical spreading depression shows little change. Higher c-Fos expression in the amygdala may indicate alterations of the limbic system in Tg, suggesting an enhanced linkage between cortical spreading depression and amygdala connectivity in familial hemiplegic migraine 2 patients.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/fisiopatologia , Mutação Puntual
7.
J Cereb Blood Flow Metab ; 39(8): 1570-1587, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-29513112

RESUMO

Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.


Assuntos
Circulação Cerebrovascular/genética , Enxaqueca com Aura/metabolismo , Contração Muscular/genética , ATPase Trocadora de Sódio-Potássio/genética , Vasoconstrição/genética , Animais , Cálcio/metabolismo , Camundongos , Artéria Cerebral Média/metabolismo , Enxaqueca com Aura/genética , Músculo Liso Vascular/metabolismo , Mutação Puntual
8.
Curr Comput Aided Drug Des ; 14(4): 385-390, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29756582

RESUMO

BACKGROUND: Polypharmacology is a design or use of pharmaceutical agents in which single drug is used to treat multiple diseases. Aquaporin proteins are identified to treat migraine with aura and brain edema. This study focuses on Aquaporin-1 and Aquaporin-4. AQP-1 is expressed in small afferent sensory nerve fibers. Over-expression of peripheral nervous system causes migraine. METHODS: AQP-4 is an abundant channel water protein in brain that regulates water transport to prevent homeostasis. Over-expression of AQP-4 contributes to water imbalance in ischemic pathology resulting in cerebral edema. Purpose of this study is to identify a potent inhibitor for the treatment of migraine with aura and brain edema. RESULTS: As in the recent studies, no conventional methodologies have been focused through the approach of polypharmacology. Structures of AQP-1 and AQP- 4 proteins were retrieved from PDB (Protein Data Bank). PyRx software was used to perform molecular docking. CONCLUSION: Analogues of ligands were analyzed which contained significant similarities of associated proteins to get efficient inhibitor. Toxicity of lead compound was measured through admetSAR. A lead compound was predicted to treat these diseases.


Assuntos
Aquaporina 1/antagonistas & inibidores , Aquaporina 4/antagonistas & inibidores , Edema Encefálico/tratamento farmacológico , Descoberta de Drogas/métodos , Enxaqueca com Aura/tratamento farmacológico , Polifarmacologia , Aquaporina 1/química , Aquaporina 1/metabolismo , Aquaporina 4/química , Aquaporina 4/metabolismo , Edema Encefálico/metabolismo , Humanos , Ligantes , Enxaqueca com Aura/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular
9.
Cephalalgia ; 38(11): 1748-1758, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29239212

RESUMO

Objectives Sarcoma family kinase activity is associated with multiple diseases including ischemia and cancer; however, its role in the mechanism of migraine aura has been less well characterised. This study aims to investigate whether sarcoma family kinase is required for cortical spreading depression. Methods Cortical spreading depression was induced by topical application of K+ to the cerebral cortex and was monitored using electrophysiology in rats, and intrinsic optical signal in mouse brain slices. Drugs were perfused into the contralateral cerebral ventricle for pharmacological manipulations in rats. Western blot analysis was used for detecting the level of phosphorylated, and total, sarcoma family kinase in the ipsilateral cortex of rats. Key results The data demonstrate that a single cortical spreading depression in rats induced ipsilateral cortical sarcoma family kinase phosphorylation at the Y416 site. Deactivation of sarcoma family kinase by its inhibitor (3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1 H-pyrazolo[3,4- dpyrimidin-4-amine) suppressed the elevated enzyme activity and cortical susceptibility to cortical spreading depression. Interestingly, the inhibitory effect of the N-methyl-D-aspartate receptor antagonist NVP-AAM077 on cortical spreading depression was reversed by the sarcoma family kinase activator pYEEI (EPQY(PO3H2)EEEIPIYL), suggesting a link between this enzyme and N-methyl-D-aspartate receptors. Similarly, after deactivation of sarcoma family kinase, a reduction of sarcoma family kinase phosphorylation and cortical susceptibility to cortical spreading depression was observed with NVP-AAM077. Conclusions We conclude that activation of sarcoma family kinase is required for cortical spreading depression, and this process is regulated by recruiting N-methyl-D-aspartate receptors. This study provides novel insight for sarcoma family kinase function in the mechanism of migraine aura.


Assuntos
Encéfalo/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Quinases da Família src/metabolismo , Animais , Masculino , Camundongos , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/fisiopatologia , Ratos , Ratos Sprague-Dawley
10.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27175010

RESUMO

BACKGROUND: On trigeminal ganglion neurons, pain-sensing P2X3 receptors are constitutively inhibited by brain natriuretic peptide via its natriuretic peptide receptor-A. This inhibition is associated with increased P2X3 serine phosphorylation and receptor redistribution to non-lipid raft membrane compartments. The natriuretic peptide receptor-A antagonist anantin reverses these effects. We studied whether P2X3 inhibition is dysfunctional in a genetic familial hemiplegic migraine type-1 model produced by introduction of the human pathogenic R192Q missense mutation into the mouse CACNA1A gene (knock-in phenotype). This model faithfully replicates several properties of familial hemiplegic migraine type-1, with gain-of-function of CaV2.1 Ca(2+) channels, raised levels of the algogenic peptide calcitonin gene-related peptide, and enhanced activity of P2X3 receptors in trigeminal ganglia. RESULTS: In knock-in neurons, anantin did not affect P2X3 receptor activity, membrane distribution, or serine phosphorylation level, implying ineffective inhibition by the constitutive brain natriuretic peptide/natriuretic peptide receptor-A pathway. However, expression and functional properties of this pathway remained intact together with its ability to downregulate TRPV1 channels. Reversing the familial hemiplegic migraine type-1 phenotype with the CaV2.1-specific antagonist, ω-agatoxin IVA restored P2X3 activity to wild-type level and enabled the potentiating effects of anantin again. After blocking calcitonin gene-related peptide receptors, P2X3 receptors exhibited wild-type properties and were again potentiated by anantin. CONCLUSIONS: P2X3 receptors on mouse trigeminal ganglion neurons are subjected to contrasting modulation by inhibitory brain natriuretic peptide and facilitatory calcitonin gene-related peptide that both operate via complex intracellular signaling. In the familial hemiplegic migraine type-1 migraine model, the action of calcitonin gene-related peptide appears to prevail over brain natriuretic peptide, thus suggesting that peripheral inhibition of P2X3 receptors becomes insufficient and contributes to trigeminal pain sensitization.


Assuntos
Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriais/patologia , Gânglio Trigeminal/patologia , Animais , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Enxaqueca com Aura/patologia , Modelos Biológicos , Peptídeos Cíclicos/farmacologia , Fenótipo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores do Fator Natriurético Atrial/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , ômega-Agatoxina IVA/farmacologia
11.
Sci Rep ; 6: 22047, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911348

RESUMO

Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na(+)/K(+)-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2(+/G301R)) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2(G301R/G301R) E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2(+/G301R) male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2(+/G301R) behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.


Assuntos
Ácido Glutâmico/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Mutação , Fenótipo , Estimulação Acústica , Animais , Comportamento Animal , Transporte Biológico , Circulação Cerebrovascular , Biologia Computacional/métodos , Depressão Alastrante da Atividade Elétrica Cortical/genética , Modelos Animais de Doenças , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Enxaqueca com Aura/diagnóstico , Enxaqueca com Aura/tratamento farmacológico , Atividade Motora , Tempo de Reação , ATPase Trocadora de Sódio-Potássio/genética , Estresse Fisiológico
12.
Ann Neurol ; 78(2): 193-210, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26032020

RESUMO

OBJECTIVE: Migraine is among the most common and debilitating neurological conditions. Familial hemiplegic migraine type 1 (FHM1), a monogenic migraine subtype, is caused by gain-of-function of voltage-gated CaV 2.1 calcium channels. FHM1 mice carry human pathogenic mutations in the α1A subunit of CaV 2.1 channels and are highly susceptible to cortical spreading depression (CSD), the electrophysiologic event underlying migraine aura. To date, however, the mechanism underlying increased CSD/migraine susceptibility remains unclear. METHODS: We employed in vivo multiphoton microscopy of the genetically encoded Ca(2+)-indicator yellow cameleon to investigate synaptic morphology and [Ca(2+)]i in FHM1 mice. To study CSD-induced cerebral oligemia, we used in vivo laser speckle flowmetry and multimodal imaging. With electrophysiologic recordings, we investigated the effect of the CaV 2.1 gating modifier tert-butyl dihydroquinone on CSD in vivo. RESULTS: FHM1 mutations elevate neuronal [Ca(2+)]i and alter synaptic morphology as a mechanism for enhanced CSD susceptibility that we were able to normalize with a CaV 2.1 gating modifier in hyperexcitable FHM1 mice. At the synaptic level, axonal boutons were larger, and dendritic spines were predominantly of the mushroom type, which both provide a structural correlate for enhanced neuronal excitability. Resting neuronal [Ca(2+)]i was elevated in FHM1, with loss of compartmentalization between synapses and neuronal shafts. The percentage of calcium-overloaded neurons was increased. Neuronal [Ca(2+)]i surge during CSD was faster and larger, and post-CSD oligemia and hemoglobin desaturation were more severe in FHM1 brains. INTERPRETATION: Our findings provide a mechanism for enhanced CSD susceptibility in hemiplegic migraine. Abnormal synaptic Ca(2+) homeostasis and morphology may contribute to chronic neurodegenerative changes as well as enhanced vulnerability to ischemia in migraineurs.


Assuntos
Canais de Cálcio Tipo N/genética , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/genética , Enxaqueca com Aura/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio Tipo N/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Homeostase/genética , Hidroquinonas/farmacologia , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Enxaqueca com Aura/genética , Enxaqueca com Aura/patologia , Mutação , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sinapses/efeitos dos fármacos , Sinapses/patologia
13.
J Biol Chem ; 289(6): 3186-97, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24356962

RESUMO

The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na(+),K(+)-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na(+),K(+)-ATPase mutations, extending the C terminus by either 28 residues ("+28" mutation) or an extra tyrosine ("+Y"), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na(+) and K(+) concentrations ([Na(+)]i and [K(+)]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na(+) affinity without disturbance of K(+) binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na(+)]i and reduction of [K(+)]i was detected in cells expressing mutants with reduced Na(+) affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na(+) affinity were found to reduce [Na(+)]i. It is concluded that the Na(+) affinity of the Na(+),K(+)-ATPase is an important determinant of [Na(+)]i.


Assuntos
Distúrbios Distônicos/metabolismo , Enxaqueca com Aura/metabolismo , Mutação de Sentido Incorreto , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Distúrbios Distônicos/genética , Humanos , Transporte de Íons/genética , Enxaqueca com Aura/genética , Potássio/metabolismo , Estrutura Terciária de Proteína , Ratos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
14.
Biochim Biophys Acta ; 1832(12): 2173-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23954377

RESUMO

Familial hemiplegic migraine (FHM) is a monogenic variant of migraine with aura. One of the three known causative genes, ATP1A2, which encodes the α2 isoform of Na,K-ATPase, causes FHM type 2 (FHM2). Over 50 FHM2 mutations have been reported, but most have not been characterized functionally. Here we study the molecular mechanism of Na,K-ATPase α2 missense mutations. Mutants E700K and P786L inactivate or strongly reduce enzyme activity. Glutamic acid 700 is located in the phosphorylation (P) domain and the mutation most likely disrupts the salt bridge with Lysine 35, thereby destabilizing the interaction with the actuator (A) domain. Mutants G900R and E902K are present in the extracellular loop at the interface of the α and ß subunit. Both mutants likely hamper the interaction between these subunits and thereby decrease enzyme activity. Mutants E174K, R548C and R548H reduce the Na(+) and increase the K(+) affinity. Glutamic acid 174 is present in the A domain and might form a salt bridge with Lysine 432 in the nucleotide binding (N) domain, whereas Arginine 548, which is located in the N domain, forms a salt bridge with Glutamine 219 in the A domain. In the catalytic cycle, the interactions of the A and N domains affect the K(+) and Na(+) affinities, as observed with these mutants. Functional consequences were not observed for ATP1A2 mutations found in two sporadic hemiplegic migraine cases (Y9N and R879Q) and in migraine without aura (R51H and C702Y).


Assuntos
Enxaqueca com Aura/genética , Mutação de Sentido Incorreto/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Western Blotting , Humanos , Enxaqueca com Aura/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ouabaína/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/química
15.
PLoS One ; 8(1): e52394, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326332

RESUMO

Latent changes in trigeminal ganglion structure and function resembling inflammatory conditions may predispose to acute attacks of migraine pain. Here, we investigated whether, in trigeminal sensory ganglia, cytokines such as TNFα might contribute to a local inflammatory phenotype of a transgenic knock-in (KI) mouse model of familial hemiplegic migraine type-1 (FHM-1). To this end, macrophage occurrence and cytokine expression in trigeminal ganglia were compared between wild type (WT) and R192Q mutant Ca(V)2.1 Ca(2+) channel (R192Q KI) mice, a genetic model of FHM-1. Cellular and molecular characterization was performed using a combination of confocal immunohistochemistry and cytokine assays. With respect to WT, R192Q KI trigeminal ganglia were enriched in activated macrophages as suggested by their morphology and immunoreactivity to the markers Iba1, CD11b, and ED1. R192Q KI trigeminal ganglia constitutively expressed higher mRNA levels of IL1ß, IL6, IL10 and TNFα cytokines and the MCP-1 chemokine. Consistent with the report that TNFα is a major factor to sensitize trigeminal ganglia, we observed that, following an inflammatory reaction evoked by LPS injection, TNFα expression and macrophage occurrence were significantly higher in R192Q KI ganglia with respect to WT ganglia. Our data suggest that, in KI trigeminal ganglia, the complex cellular and molecular environment could support a new tissue phenotype compatible with a neuroinflammatory profile. We propose that, in FHM patients, this condition might contribute to trigeminal pain pathophysiology through release of soluble mediators, including TNFα, that may modulate the crosstalk between sensory neurons and resident glia, underlying the process of neuronal sensitisation.


Assuntos
Macrófagos/metabolismo , Enxaqueca com Aura/metabolismo , Gânglio Trigeminal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Western Blotting , Antígeno CD11b/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Enxaqueca com Aura/genética , Enxaqueca com Aura/patologia , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/patologia , Fator de Necrose Tumoral alfa/genética
17.
Nature ; 467(7311): 99-102, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20720542

RESUMO

The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when potassium is released the proton will also return to the cytoplasm, thus allowing an overall asymmetric stoichiometry of the transported ions. The C terminus controls the gate to the pathway. Its structure is crucial for pump function, as demonstrated by at least eight mutations in the region that cause severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely to apply to the H(+)/K(+)-ATPase and the Ca(2+)-ATPase.


Assuntos
Transporte de Íons , Enxaqueca com Aura/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Cristalografia por Raios X , Humanos , Enxaqueca com Aura/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Oócitos/metabolismo , Potássio/metabolismo , Prótons , Squalus acanthias/metabolismo , Sus scrofa/metabolismo , Xenopus
18.
Clin Chim Acta ; 409(1-2): 1-3, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19632213

RESUMO

Matrix metalloproteinases (MMP) are proteolytic enzymes involved in the remodelling of almost all protein components of the extracellular matrix (ECM), characterized in 1960's during the metamorphosis process in tadpole tails. Ever growing research has identified MMP expression in a variety of physiological processes. Uncontrolled or inappropriate expression/activity of MMPs contributes to different pathologic conditions, including inflammation, tumour growth, cancer cell invasion and infection diseases. Under physiological conditions, MMP activity is precisely controlled by TIMPs and may have beneficial actions in the mature nervous system. However, an alteration of the MMP/TIMP balance is thought to be a key feature of the pathology of many inflammatory, degenerative and malignant neurological diseases; their pathogenesis is correlated to the detrimental effects of altered MMP/TIMP expression, leading to breakdown of the blood-brain barrier (BBB), demyelination, cytokine production and propagation of inflammatory response, deposition of amyloid proteins, tumor invasion and metastasis). Migraine is a complex, disabling disorder of the brain that manifests itself as attacks of often severe, throbbing head pain with sensory sensitivity to light, sound, smell and head movement (migraine without aura), and in a third of patients, with neurological symptoms (migraine with aura). In this issue of Clinica Chimica Acta, Martins-Oliveira et al. examine the different circulating MMP and TIMP profiles in women with migraine with and without aura. They confirm and expand the observation of increased MMP-9 plasma levels in migrainous patients, also describing for the first time that MMP-2, TIMP-1 and TIMP-2 show a different expression profile in migraine. Their findings are critically evaluated and reviewed. The knowledge of MMP- and TIMP-dependent pathways in migraine headache, the new proteolytic pathophysiological mechanisms, and the beneficial and detrimental effects of MMP inhibitory drugs may represent pieces of the complex migraine jigsaw puzzle, which is finalized to optimize cost-effectiveness of treatment and patient outcomes.


Assuntos
Metaloproteinases da Matriz/metabolismo , Transtornos de Enxaqueca/complicações , Enxaqueca com Aura/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Transtornos de Enxaqueca/enzimologia , Transtornos de Enxaqueca/patologia , Enxaqueca com Aura/enzimologia , Enxaqueca com Aura/patologia , Publicações Periódicas como Assunto
19.
Neurology ; 71(11): 841-7, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18779512

RESUMO

OBJECTIVE: The neuropeptide calcitonin gene-related peptide (CGRP) is a migraine trigger that plays a crucial role in migraine pathophysiology, and CGRP antagonism is efficient in the treatment of migraine attacks. Familial hemiplegic migraine (FHM) is a dominantly inherited subtype of migraine with aura associated with several gene mutations. FHM shares many phenotypical similarities with common types of migraine, indicating common neurobiological pathways. We tested the hypothesis that the FHM genotype confers a CGRP hypersensitive phenotype. METHODS: We included 9 FHM patients with known mutations in the CACNA1A and ATP1A2 genes and 10 healthy controls. All subjects received i.v. infusion of CGRP (1.5 microg/min). We recorded headache intensity on a verbal rating scale and vascular changes in the middle cerebral artery and the superficial temporal artery. RESULTS: CGRP infusion did not induce an aura in any of the participants. The incidences of reported migraine and migraine-like headache were not different in the two groups, with 22% (2 of 9) reporting migraine in the patient group and 10% (1 of 10) reporting migraine-like headache in the control group (95% CI -0.31 to 0.55; p = 0.58). Headache severity and intensity were not different between the groups. CONCLUSIONS: Familial hemiplegic migraine (FHM) patients do not show hypersensitivity of the calcitonin gene-related peptide (CGRP)-cyclic adenosine 3',5'-monophosphate pathway, as characteristically seen in migraine patients without aura. This indicates that the pathophysiologic pathways underlying migraine headache in FHM may be different from the common types of migraine and questions whether CGRP antagonists would be effective in the treatment of FHM patients.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Enxaqueca com Aura/metabolismo , Fenótipo , Adulto , Velocidade do Fluxo Sanguíneo/genética , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , AMP Cíclico/genética , AMP Cíclico/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Enxaqueca com Aura/etiologia , Enxaqueca com Aura/fisiopatologia , Mutação/genética , Transdução de Sinais/genética , Método Simples-Cego
20.
J Biol Chem ; 283(45): 31097-106, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18728015

RESUMO

Mutations in ATP1A2, the gene coding for the Na(+)/K(+)-ATPase alpha(2)-subunit, are associated with both familial hemiplegic migraine and sporadic cases of hemiplegic migraine. In this study, we examined the functional properties of 11 ATP1A2 mutations associated with familial or sporadic hemiplegic migraine, including missense mutations (T263M, T376M, R383H, A606T, R763H, M829R, R834Q, R937P, and X1021R), a deletion mutant (del(K935-S940)ins(I)), and a frameshift mutation (S966fs). According to the Na(+)/K(+)-ATPase crystal structure, a subset of the mutated residues (Ala(606), Arg(763), Met(829), and Arg(834)) is involved in important interdomain H-bond networks, and the C terminus of the enzyme, which is elongated by the X1021R mutation, has been implicated in voltage dependence and formation of a third Na(+)-binding site. Upon heterologous expression in Xenopus oocytes, the analysis of electrogenic transport properties, Rb(+) uptake, and protein expression revealed pronounced and markedly diverse functional alterations in all ATP1A2 mutants. Abnormalities included a complete loss of function (T376M), impaired plasma membrane expression (del(K935-S940)ins(I) and S966fs), and altered apparent affinities for extracellular cations or reduced enzyme turnover (R383H, A606T, R763H, R834Q, and X1021R). In addition, changes in the voltage dependence of pump currents and the increased rate constants of the voltage jump-induced redistribution between E(1)P and E(2)P states were observed. Thus, mutations that disrupt distinct interdomain H-bond patterns can cause abnormal conformational flexibility and exert long range consequences on apparent cation affinities or voltage dependence. Of interest, the X1021R mutation severely impaired voltage dependence and kinetics of Na(+)-translocating partial reactions, corroborating the critical role of the C terminus of Na(+)/K(+)-ATPase in these processes.


Assuntos
Doenças Genéticas Inatas/metabolismo , Enxaqueca com Aura/metabolismo , Mutação , ATPase Trocadora de Sódio-Potássio/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/genética , Doenças Genéticas Inatas/genética , Humanos , Ligação de Hidrogênio , Transporte de Íons/genética , Enxaqueca com Aura/genética , Estrutura Terciária de Proteína/fisiologia , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA